Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; 13(11): e2302609, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38227977

RESUMEN

The extracellular environment regulates the structures and functions of cells, from the molecular to the tissue level. However, the underlying mechanisms influencing the organization and adaptation of cancer in three-dimensional (3D) environments are not yet fully understood. In this study, the influence of the viscosity of the environment is investigated on the mechanical adaptability of human hepatoma cell (HepG2) spheroids in vitro, using 3D microcapsule reactors formed with droplet-based microfluidics. To mimic the environment with different mechanical properties, HepG2 cells are encapsulated in alginate core-shell reservoirs (i.e., microcapsules) with different core viscosities tuned by incorporating carboxymethylcellulose. The significant changes in cell and spheroid distribution, proliferation, and cytoskeleton are observed and quantified. Importantly, changes in the expression and distribution of F-actin and keratin 8 indicate the relation between spheroid stiffness and viscosity of the surrounding medium. The increase of F-actin levels in the viscous medium can indicate an enhanced ability of tumor cells to traverse dense tissue. These results demonstrate the ability of cancer cells to dynamically adapt to the changes in extracellular viscosity, which is an important physical cue regulating tumor development, and thus of relevance in cancer biology.


Asunto(s)
Cápsulas , Carcinoma Hepatocelular , Neoplasias Hepáticas , Esferoides Celulares , Humanos , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Viscosidad , Células Hep G2 , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Cápsulas/química , Alginatos/química , Proliferación Celular , Actinas/metabolismo , Citoesqueleto/metabolismo
2.
EJNMMI Radiopharm Chem ; 9(1): 1, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38165538

RESUMEN

BACKGROUND: Transglutaminase 2 (TGase 2) is a multifunctional protein and has a prominent role in various (patho)physiological processes. In particular, its transamidase activity, which is rather latent under physiological conditions, gains importance in malignant cells. Thus, there is a great need of theranostic probes for targeting tumor-associated TGase 2, and targeted covalent inhibitors appear to be particularly attractive as vector molecules. Such an inhibitor, equipped with a radionuclide suitable for noninvasive imaging, would be supportive for answering the general question on the possibility for functional characterization of tumor-associated TGase 2. For this purpose, the recently developed 18F-labeled Nε-acryloyllysine piperazide [18F]7b, which is a potent and selective irreversible inhibitor of TGase 2, was subject to a detailed radiopharmacological characterization herein. RESULTS: An alternative radiosynthesis of [18F]7b is presented, which demands less than 300 µg of the respective trimethylammonio precursor per synthesis and provides [18F]7b in good radiochemical yields (17 ± 7%) and high (radio)chemical purities (≥ 99%). Ex vivo biodistribution studies in healthy mice at 5 and 60 min p.i. revealed no permanent enrichment of 18F-activity in tissues with the exception of the bone tissue. In vivo pretreatment with ketoconazole and in vitro murine liver microsome studies complemented by mass spectrometric analysis demonstrated that bone uptake originates from metabolically released [18F]fluoride. Further metabolic transformations of [18F]7b include mono-hydroxylation and glucuronidation. Based on blood sampling data and liver microsome experiments, pharmacokinetic parameters such as plasma and intrinsic clearance were derived, which substantiated the apparently rapid distribution of [18F]7b in and elimination from the organisms. A TGase 2-mediated uptake of [18F]7b in different tumor cell lines could not be proven. Moreover, evaluation of [18F]7b in melanoma tumor xenograft models based on A375-hS100A4 (TGase 2 +) and MeWo (TGase 2 -) cells by ex vivo biodistribution and PET imaging studies were not indicative for a specific targeting. CONCLUSION: [18F]7b is a valuable radiometric tool to study TGase 2 in vitro under various conditions. However, its suitability for targeting tumor-associated TGase 2 is strongly limited due its unfavorable pharmacokinetic properties as demonstrated in rodents. Consequently, from a radiochemical perspective [18F]7b requires appropriate structural modifications to overcome these limitations.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38212233

RESUMEN

Tumours are heterogeneous tissues containing diverse populations of cells and an abundant extracellular matrix (ECM). This tumour microenvironment prompts cancer cells to adapt their metabolism to survive and grow. Besides epigenetic factors, the metabolism of cancer cells is shaped by crosstalk with stromal cells and extracellular components. To date, most experimental models neglect the complexity of the tumour microenvironment and its relevance in regulating the dynamics of the metabolism in cancer. We discuss emerging strategies to model cellular and extracellular aspects of cancer metabolism. We highlight cancer models based on bioengineering, animal, and mathematical approaches to recreate cell-cell and cell-matrix interactions and patient-specific metabolism. Combining these approaches will improve our understanding of cancer metabolism and support the development of metabolism-targeting therapies.

4.
Acta Biomater ; 162: 211-225, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36931420

RESUMEN

Extracellular matrix (ECM) provides various types of direct interactions with cells and a dynamic environment, which can be remodeled through different assembly/degradation mechanisms to adapt to different biological processes. Herein, through introducing polyphosphate-modified hyaluronic acid and bioactive glass (BG) nano-fibril into a self-assembled hydrogel system with peptide-polymer conjugate, we can realize many new ECM-like functions in a synthetic polymer network. The hydrogel network formation is mediated by coacervation, followed by a gradual transition of peptide structure from  α-helix to ß-sheet. The ECM-like hydrogels can be degraded through a number of orthogonal mechanisms, including treatments with protease, hyaluronidase, alkaline phosphatase, and calcium ion. As 2D coating, the ECM-like hydrogels can be used to modify the planar surface to promote the adhesion of mesenchymal stromal cells, or to coat the cell surface in a layer-by-layer fashion to shield the interaction with the substrate. As ECM-like hydrogels for 3D cell culture, the system is compatible with injection and cell encapsulation. Upon incorporating fragmented electrospun bioactive glass nano-fibril into the hydrogels, the synergetic effects of soft hydrogel and stiff reinforcement nanofibers on recapitulating ECM functions result in reduced cell circularity in 3D. Finally, by injecting the ECM-like hydrogels into mice, gradual degradations over a time period of one month and high biocompatibility have been shown in vivo. The contribution of complex network dynamics and hierarchical structures to cell-biomatrix interaction can be investigated multi-dimensionally, as many mechanisms are orthogonal to each other and can be regulated individually. STATEMENT OF SIGNIFICANCE: A list of native ECM features has attracted the most interest and attention in the research of synthetic biomaterials. In this research, we have described a simple ECM-like hydrogel system in which the complex and elegant functions of native ECM can be recapitulated in a chemically defined synthetic system. The ECM-like hydrogel systems were developed to avoid undesired features of biological substances (e.g., ethical concerns, batch-to-batch variation, immunogenicity, and potential risk of contamination), as well as gaining new functions to facilitate bioengineering applications (e.g., 3D cell culture, injection, and high stability). To this end, we have developed an ECM-like hydrogel system and provide evidence that this purely synthetic biomaterial is a promising candidate for cell bioengineering applications.


Asunto(s)
Matriz Extracelular , Hidrogeles , Ratones , Animales , Hidrogeles/farmacología , Hidrogeles/química , Matriz Extracelular/química , Materiales Biocompatibles/farmacología , Bioingeniería , Péptidos/química , Polímeros
5.
Bioengineering (Basel) ; 10(1)2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36671689

RESUMEN

The endothelium plays a key role in the dynamic balance of hemodynamic, humoral and inflammatory processes in the human body. Its central importance and the resulting therapeutic concepts are the subject of ongoing research efforts and form the basis for the treatment of numerous diseases. The pulmonary endothelium is an essential component for the gas exchange in humans. Pulmonary endothelial dysfunction has serious consequences for the oxygenation and the gas exchange in humans with the potential of consecutive multiple organ failure. Therefore, in this review, the dysfunction of the pulmonary endothel due to viral, bacterial, and fungal infections, ventilator-related injury, and aspiration is presented in a medical context. Selected aspects of the interaction of endothelial cells with primarily alveolar macrophages are reviewed in more detail. Elucidation of underlying causes and mechanisms of damage and repair may lead to new therapeutic approaches. Specific emphasis is placed on the processes leading to the induction of cyclooxygenase-2 and downstream prostanoid-based signaling pathways associated with this enzyme.

6.
Int J Mol Sci ; 23(9)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35562866

RESUMEN

Transglutaminase 2 (TGase 2) is a multifunctional protein which is involved in various physiological and pathophysiological processes. The latter also include its participation in the development and progression of malignant neoplasms, which are often accompanied by increased protein synthesis. In addition to the elucidation of the molecular functions of TGase 2 in tumor cells, knowledge of its concentration that is available for targeting by theranostic agents is a valuable information. Herein, we describe the application of a recently developed fluorescence anisotropy (FA)-based assay for the quantitative expression profiling of TGase 2 by means of transamidase-active enzyme in cell lysates. This assay is based on the incorporation of rhodamine B-isonipecotyl-cadaverine (R-I-Cad) into N,N-dimethylated casein (DMC), which results in an increase in the FA signal over time. It was shown that this reaction is not only catalyzed by TGase 2 but also by TGases 1, 3, and 6 and factor XIIIa using recombinant proteins. Therefore, control measurements in the presence of a selective irreversible TGase 2 inhibitor were mandatory to ascertain the specific contribution of TGase 2 to the overall FA rate. To validate the assay regarding the quality of quantification, spike/recovery and linearity of dilution experiments were performed. A total of 25 cancer and 5 noncancer cell lines were characterized with this assay method in terms of their activatable TGase 2 concentration (fmol/µg protein lysate) and the results were compared to protein synthesis data obtained by Western blotting. Moreover, complementary protein quantification methods using a biotinylated irreversible TGase 2 inhibitor as an activity-based probe and a commercially available ELISA were applied to selected cell lines to further validate the results obtained by the FA-based assay. Overall, the present study demonstrates that the FA-based assay using the substrate pair R-I-Cad and DMC represents a facile, homogenous and continuous method for quantifying TGase 2 activity in cell lysates.


Asunto(s)
Proteína Glutamina Gamma Glutamiltransferasa 2 , Transglutaminasas , Bioensayo , Cadaverina/farmacología , Caseínas , Polarización de Fluorescencia , Transglutaminasas/metabolismo
7.
Cells ; 11(8)2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35456021

RESUMEN

Transglutaminase 2 (TG2) is a protein expressed in many tissues that exerts numerous, sometimes contradictory, intra- and extracellular functions, under both physiological and pathophysiological conditions. In the context of tumor progression, it has been found to be involved in cell adhesion, DNA repair mechanisms, induction of apoptosis, and mesenchymal transdifferentiation, among others. Here, we hypothesized that TG2 also contributes to the radioresistance of two human melanoma cell lines, A375 and MeWo, which can be seen to differ in their basal TG2 biosynthesis by examining their proliferation and clonal expansion after irradiation. For this purpose, cellular TG2 biosynthesis and TG2 activity were modulated by transfection-induced overexpression or TG2 knock-out and application of TG2-selective inhibitors. Proliferation and clonal expansion of TG2-overexpressing cells was not enhanced over wildtype cells, suggesting that increased TG2 biosynthesis does not further enhance the radioresistance of melanoma cells. Conversely, TG2 knock-out in A375 cells reduced their proliferation, as well as clonal and spheroidal expansion after irradiation, which indicates a contribution of TG2 to the radioresistance of melanoma cells. Since TG1, TG3, and partly also, TG6 biosynthesis was detectable in A375 and MeWo cells, it can be assumed that these other members of the TG family may exert a partially compensatory effect.


Asunto(s)
Melanoma , Tolerancia a Radiación , Adhesión Celular , Línea Celular Tumoral/efectos de la radiación , Humanos , Melanoma/genética , Melanoma/radioterapia , Proteína Glutamina Gamma Glutamiltransferasa 2
8.
Small ; 18(13): e2104758, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35132776

RESUMEN

Stem cell bioengineering and therapy require different model systems and materials in different stages of development. If a chemically defined biomatrix system can fulfill most tasks, it can minimize the discrepancy among various setups. By screening biomaterials synthesized through a coacervation-mediated self-assembling mechanism, a biomatrix system optimal for 2D human mesenchymal stromal cell (hMSC) culture and osteogenesis is identified. Its utility for hMSC bioengineering is further demonstrated in coating porous bioactive glass scaffolds and nanoparticle synthesis for esiRNA delivery to knock down the SOX-9 gene with high delivery efficiency. The self-assembled injectable system is further utilized for 3D cell culture, segregated co-culture of hMSC with human umbilical vein endothelial cells (HUVEC) as an angiogenesis model, and 3D bioprinting. Most interestingly, the coating of bioactive glass with the self-assembled biomatrix not only supports the proliferation and osteogenesis of hMSC in the 3D scaffold but also induces the amorphous bioactive glass (BG) scaffold surface to form new apatite crystals resembling bone-shaped plate structures. Thus, the self-assembled biomatrix system can be utilized in various dimensions, scales, and geometries for many different bioengineering applications.


Asunto(s)
Bioimpresión , Células Madre Mesenquimatosas , Diferenciación Celular , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Osteogénesis , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
9.
Biol Chem ; 402(11): 1397-1413, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34313084

RESUMEN

Knowledge of the physiological and pathological processes, taking place in bone during fracture healing or defect regeneration, is essential in order to develop strategies to enhance bone healing under normal and critical conditions. Preclinical testing allows a wide range of imaging modalities that may be applied both simultaneously and longitudinally, which will in turn lower the number of animals needed to allow a comprehensive assessment of the healing process. This work provides an up-to-date review on morphological, functional, optical, biochemical, and biophysical imaging techniques including their advantages, disadvantages and potential for combining them in a multimodal and multiscale manner. The focus lies on preclinical testing of biomaterials modified with artificial extracellular matrices in various animal models to enhance bone remodeling and regeneration.


Asunto(s)
Huesos/metabolismo , Curación de Fractura , Animales , Humanos
10.
Nat Commun ; 12(1): 2407, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33893308

RESUMEN

Many features of extracellular matrices, e.g., self-healing, adhesiveness, viscoelasticity, and conductivity, are associated with the intricate networks composed of many different covalent and non-covalent chemical bonds. Whereas a reductionism approach would have the limitation to fully recapitulate various biological properties with simple chemical structures, mimicking such sophisticated networks by incorporating many different functional groups in a macromolecular system is synthetically challenging. Herein, we propose a strategy of convergent synthesis of complex polymer networks to produce biomimetic electroconductive liquid metal hydrogels. Four precursors could be individually synthesized in one to two reaction steps and characterized, then assembled to form hydrogel adhesives. The convergent synthesis allows us to combine materials of different natures to generate matrices with high adhesive strength, enhanced electroconductivity, good cytocompatibility in vitro and high biocompatibility in vivo. The reversible networks exhibit self-healing and shear-thinning properties, thus allowing for 3D printing and minimally invasive injection for in vivo experiments.


Asunto(s)
Adhesivos/química , Conductividad Eléctrica , Hidrogeles/química , Metales/química , Adhesivos/síntesis química , Adhesivos/farmacología , Animales , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Bacillus subtilis/efectos de los fármacos , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Línea Celular , Proliferación Celular/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Hidrogeles/síntesis química , Hidrogeles/farmacología , Ratones , Microscopía Electrónica , Mioblastos/citología , Mioblastos/efectos de los fármacos , Polímeros/síntesis química , Polímeros/química , Polímeros/farmacología
11.
Adv Healthc Mater ; 10(11): e2100012, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33930246

RESUMEN

Conductive hydrogels (CHs) are emerging as a promising and well-utilized platform for 3D cell culture and tissue engineering to incorporate electron signals as biorelevant physical cues. In conventional covalently crosslinked conductive hydrogels, the network dynamics (e.g., stress relaxation, shear shining, and self-healing) required for complex cellular functions and many biomedical utilities (e.g., injection) cannot be easily realized. In contrast, dynamic conductive hydrogels (DCHs) are fabricated by dynamic and reversible crosslinks. By allowing for the breaking and reforming of the reversible linkages, DCHs can provide dynamic environments for cellular functions while maintaining matrix integrity. These dynamic materials can mimic some properties of native tissues, making them well-suited for several biotechnological and medical applications. An overview of the design, synthesis, and engineering of DCHs is presented in this review, focusing on the different dynamic crosslinking mechanisms of DCHs and their biomedical applications.


Asunto(s)
Hidrogeles , Ingeniería de Tejidos , Conductividad Eléctrica
12.
J Med Chem ; 64(6): 3462-3478, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33705656

RESUMEN

The transamidase activity of transglutaminase 2 (TGase 2) is considered to be important for several pathophysiological processes including fibrotic and neoplastic tissue growth, whereas in healthy cells this enzymatic function is predominantly latent. Methods that enable the highly sensitive detection of TGase 2, such as application of radiolabeled activity-based probes, will support the exploration of the enzyme's function in various diseases. In this context, the radiosynthesis and detailed in vitro radiopharmacological evaluation of an 18F-labeled Nε-acryloyllysine piperazide are reported. Robust and facile detection of the radiotracer-TGase 2 complex by autoradiography of thin layer plates and polyacrylamide gels after chromatographic and electrophoretic separation owing to irreversible covalent bond formation was demonstrated for the isolated protein, cell lysates, and living cells. By use of this radiotracer, quantitative data on the expression profile of activatable TGase 2 in mouse organs and selected tumors were obtained for the first time by autoradiography of tissue sections.


Asunto(s)
Radioisótopos de Flúor/química , Proteínas de Unión al GTP/análisis , Lisina/análogos & derivados , Piperazinas/química , Transglutaminasas/análisis , Animales , Línea Celular Tumoral , Proteínas de Unión al GTP/antagonistas & inhibidores , Humanos , Lisina/síntesis química , Ratones , Neoplasias/enzimología , Neoplasias/patología , Piperazinas/síntesis química , Proteína Glutamina Gamma Glutamiltransferasa 2 , Transglutaminasas/antagonistas & inhibidores
13.
ACS Biomater Sci Eng ; 7(2): 527-540, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33496571

RESUMEN

The establishment of confluent endothelial cell (EC) monolayers on implanted materials has been identified as a concept to avoid thrombus formation but is a continuous challenge in cardiovascular device engineering. Here, material properties of gelatin-based hydrogels obtained by reacting gelatin with varying amounts of lysine diisocyanate ethyl ester were correlated with the functional state of hydrogel contacting venous EC (HUVEC) and HUVEC's ability to form a monolayer on these hydrogels. The density of adherent HUVEC on the softest hydrogel at 37 °C (G' = 1.02 kPa, E = 1.1 ± 0.3 kPa) was significantly lower (125 mm-1) than on the stiffer hydrogels (920 mm-1; G' = 2.515 and 5.02 kPa, E = 4.8 ± 0.8 and 10.3 ± 1.2 kPa). This was accompanied by increased matrix metalloprotease activity (9 pmol·min-2 compared to 0.6 pmol·min-2) and stress fiber formation, while cell-to-cell contacts were comparable. Likewise, release of eicosanoids (e.g., prostacyclin release of 1.7 vs 0.2 pg·mL-1·cell-1) and the pro-inflammatory cytokine MCP-1 (8 vs <1.5 pg·mL-1·cell-1) was higher on the softer than on the stiffer hydrogels. The expressions of pro-inflammatory markers COX-2, COX-1, and RAGE were slightly increased on all hydrogels on day 2 (up to 200% of the control), indicating a weak inflammation; however, the levels dropped to below the control from day 6. The study revealed that hydrogels with higher moduli approached the status of a functionally confluent HUVEC monolayer. The results indicate the promising potential especially of the discussed gelatin-based hydrogels with higher G' as biomaterials for implants foreseen for the venous system.


Asunto(s)
Gelatina , Hidrogeles , Materiales Biocompatibles , Células Endoteliales , Prótesis e Implantes
14.
Biomaterials ; 269: 120637, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33450583

RESUMEN

Biomaterials with attenuated adverse host tissue reactions, and meanwhile, combining biocompatibility with mimicry of mechanical and biochemical cues of native extracellular matrices (ECM) to promote integration and regeneration of tissues are important for many biomedical applications. Further, the materials should also be tailorable to feature desired application-related functions, like tunable degradability, injectability, or controlled release of bioactive molecules. Herein, a non-covalently assembled, injectable hydrogel system based on oligopeptides interacting with sulphated polysaccharides is reported, showing high tolerability and biocompatibility in immunocompetent hairless mice. Altering the peptide or polysaccharide component considerably varies the in vivo degradation rate of the hydrogels, ranging from a half-life of three weeks to no detectable degradation after three months. The hydrogel with sulphated low molecular weight hyaluronic acid exhibits sustained degradation-mediated release of heparin-binding molecules in vivo, as shown by small animal magnetic resonance imaging and fluorescence imaging, and enhances the expression of vascular endothelial growth factor in hydrogel surrounding. In vitro investigations indicate that M2-macrophages could be responsible for the moderate difference in pro-angiogenic effects. The ECM-mimetic and injectable hydrogels represent tunable bioactive scaffolds for tissue engineering, also enabling controlled release of heparin-binding signalling molecules including many growth factors.


Asunto(s)
Hidrogeles , Factor A de Crecimiento Endotelial Vascular , Animales , Materiales Biocompatibles , Preparaciones de Acción Retardada , Ratones , Ingeniería de Tejidos
15.
Cancers (Basel) ; 12(10)2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32993034

RESUMEN

In preclinical cancer research, three-dimensional (3D) cell culture systems such as multicellular spheroids and organoids are becoming increasingly important. They provide valuable information before studies on animal models begin and, in some cases, are even suitable for reducing or replacing animal experiments. Furthermore, they recapitulate microtumors, metastases, and the tumor microenvironment much better than monolayer culture systems could. Three-dimensional models show higher structural complexity and diverse cell interactions while reflecting (patho)physiological phenomena such as oxygen and nutrient gradients in the course of their growth or development. These interactions and properties are of great importance for understanding the pathophysiological importance of stromal cells and the extracellular matrix for tumor progression, treatment response, or resistance mechanisms of solid tumors. Special emphasis is placed on co-cultivation with tumor-associated cells, which further increases the predictive value of 3D models, e.g., for drug development. The aim of this overview is to shed light on selected 3D models and their advantages and disadvantages, especially from the radiopharmacist's point of view with focus on the suitability of 3D models for the radiopharmacological characterization of novel radiotracers and radiotherapeutics. Special attention is paid to pancreatic ductal adenocarcinoma (PDAC) as a predestined target for the development of new radionuclide-based theranostics.

16.
Pharmaceutics ; 12(5)2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32384753

RESUMEN

Bone defects of critical size after compound fractures, infections, or tumor resections are a challenge in treatment. Particularly, this applies to bone defects in patients with impaired bone healing due to frequently occurring metabolic diseases (above all diabetes mellitus and osteoporosis), chronic inflammation, and cancer. Adjuvant therapeutic agents such as recombinant growth factors, lipid mediators, antibiotics, antiphlogistics, and proangiogenics as well as other promising anti-resorptive and anabolic molecules contribute to improving bone healing in these disorders, especially when they are released in a targeted and controlled manner during crucial bone healing phases. In this regard, the development of smart biocompatible and biostable polymers such as implant coatings, scaffolds, or particle-based materials for drug release is crucial. Innovative chemical, physico- and biochemical approaches for controlled tailor-made degradation or the stimulus-responsive release of substances from these materials, and more, are advantageous. In this review, we discuss current developments, progress, but also pitfalls and setbacks of such approaches in supporting or controlling bone healing. The focus is on the critical evaluation of recent preclinical studies investigating different carrier systems, dual- or co-delivery systems as well as triggered- or targeted delivery systems for release of a panoply of drugs.

17.
Adv Sci (Weinh) ; 6(15): 1802077, 2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31406658

RESUMEN

Synthetic conductive biopolymers have gained increasing interest in tissue engineering, as they can provide a chemically defined electroconductive and biomimetic microenvironment for cells. In addition to low cytotoxicity and high biocompatibility, injectability and adhesiveness are important for many biomedical applications but have proven to be very challenging. Recent results show that fascinating material properties can be realized with a bioinspired hybrid network, especially through the synergy between irreversible covalent crosslinking and reversible noncovalent self-assembly. Herein, a polysaccharide-based conductive hydrogel crosslinked through noncovalent and reversible covalent reactions is reported. The hybrid material exhibits rheological properties associated with dynamic networks such as self-healing and stress relaxation. Moreover, through fine-tuning the network dynamics by varying covalent/noncovalent crosslinking content and incorporating electroconductive polymers, the resulting materials exhibit electroconductivity and reliable adhesive strength, at a similar range to that of clinically used fibrin glue. The conductive soft adhesives exhibit high cytocompatibility in 2D/3D cell cultures and can promote myogenic differentiation of myoblast cells. The heparin-containing electroconductive adhesive shows high biocompatibility in immunocompetent mice, both for topical application and as injectable materials. The materials could have utilities in many biomedical applications, especially in the area of cardiovascular diseases and wound dressing.

18.
Clin Hemorheol Microcirc ; 73(3): 381-408, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31177205

RESUMEN

 Critical-size bone defects after compound fractures, infection, or tumor resection are challenging to treat. The same is true for fractures in patients with impaired bone healing due to metabolic diseases and cancer. Despite considerable progress over the last decade in surgical techniques, material design, and dedicated imaging approaches, these scenarios represent unsolved clinical problems. The high socioeconomic burden of such conditions justifies increasing interest in novel osteoinductive drugs for adjuvant therapeutic approaches. There is an increasing body of experimental and clinical literature on potentially promising effects of growth factors, anti-resorptive, and anabolic agents. The true clinical efficacy of these, however, is discussed controversially. Therefore, we aimed to critically examine the hypothesis that targeted adjuvant therapies have the potential to enhance bone regeneration in critical-size bone defects and under systemic conditions that impair bone healing. This first approach to the topic deals with small molecule drugs and compounds that influence the immune response and inflammatory processes. In particular, literature reporting on selective cyclooxygenase-2 inhibitors has been reviewed with respect to their local and systemic mode of action and to stimulate further research on bone healing under critical conditions.


Asunto(s)
Adyuvantes Farmacéuticos/uso terapéutico , Regeneración Ósea/efectos de los fármacos , Inflamación/tratamiento farmacológico , Adyuvantes Farmacéuticos/farmacología , Animales , Humanos
19.
Clin Hemorheol Microcirc ; 73(3): 409-438, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31177206

RESUMEN

 The treatment of critical-size bone defects following complicated fractures, infections or tumor resections is a major challenge. The same applies to fractures in patients with impaired bone healing due to systemic inflammatory and metabolic diseases. Despite considerable progress in development and establishment of new surgical techniques, design of bone graft substitutes and imaging techniques, these scenarios still represent unresolved clinical problems. However, the development of new active substances offers novel potential solutions for these issues. This work discusses therapeutic approaches that influence angiogenesis or hypoxic situations in healing bone and surrounding tissue. In particular, literature on sphingosine-1-phosphate receptor modulators and nitric oxide (NO•) donors, including bi-functional (hybrid) compounds like NO•-releasing cyclooxygenase-2 inhibitors, was critically reviewed with regard to their local and systemic mode of action.


Asunto(s)
Adyuvantes Farmacéuticos/uso terapéutico , Regeneración Ósea/efectos de los fármacos , Neovascularización Patológica/metabolismo , Adyuvantes Farmacéuticos/farmacología , Humanos
20.
Clin Hemorheol Microcirc ; 73(3): 439-488, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31177207

RESUMEN

In this third in a series of reviews on adjuvant drug-assisted bone healing, further approaches aiming at influencing the healing process are discussed. Local and systemic modulation of bone metabolism is pursued with use of a number of drugs with completely different indications, which are characterized by a pleiotropic spectrum of action. These include drugs used to treat lipid disorders (HMG-CoA reductase inhibitors), hypertension (ACE inhibitors), osteoporosis (bisphosphonates), cancer (proteasome inhibitors) and others. Potential applications to enhance bone healing are discussed.


Asunto(s)
Adyuvantes Farmacéuticos/uso terapéutico , Regeneración Ósea/efectos de los fármacos , Adyuvantes Farmacéuticos/farmacología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...